Все предметы
ВНО 2016
Конспекты уроков
Опорные конспекты
Учебники PDF
Учебники онлайн
Библиотека PDF
Словари
Справочник школьника
Мастер-класс для школьника

Геометрия

Декартовы координаты на плоскости

Уравнение прямой

Любая прямая в декартовых координатах x, y имеет уравнение вида:
, где a, b, c - некоторые числа.
Нахождение координат точки пересечения прямых и случаи размещения прямой относительно системы координат описаны в разделе «Алгебра. 8 класс» («Линейная функция»).
Уравнение прямой, которая пересекает оси координат в точках и , где , , можно записать в виде:
.
Угловой коэффициент в уравнении прямой
Если уравнение прямой можно записать в виде, то коэффициент k называется угловым коэффициентом прямой.
1. Две прямые параллельны тогда и только тогда, когда у них совпадают угловые коэффициенты, а точки пересечения с осью ординат разные.
2. Угловой коэффициент с точностью до знака равен тангенсу острого угла, образованного прямой с осью абсцисс (или равен тангенсу угла между прямой и положительным направлением оси Ox).
3. Прямые, заданные уравнениями и, перпендикулярны тогда и только тогда, когда .