Математика
Уроки по математике
Все предметы
ВНО 2016
Конспекты уроков
Опорные конспекты
Учебники PDF
Учебники онлайн
Библиотека PDF
Словари
Справочник школьника
Мастер-класс для школьника

АЛГЕБРА
Уроки для 10 классов

УРОК 30

Тема. Решения тригонометрических неравенств

 

Цель урока: формирование умений учащихся решать тригонометрические неравенства.

И. Проверка домашнего задания.

1. Ответы на вопросы, которые возникли у учащихся при выполнении домашнего задания.

2. Фронтальная беседа с учащимися с использованием рис. 135.

1) дуги соответствуют неравенствам:

tg t > a, tg t a, tg t > a, tg t - a?

 

 

2) Пусть AOB = . Запишите в виде неравенства дугу, которая соответствует неравенству:

tg x a, tg x a, tg x - a, tg x -a.

3) Решите неравенства:

tg x 0; tg x 0; ctg x 0; ctg x 0.

 

II. Формирование умений решать тригонометрические неравенства

1. Решите неравенства:

а) 2sin - ; б) 2sin 1; в) 3ctg > - ; г) sin 1.

Ответ: а) , nZ; б) , nZ; в) , nZ; г) [4πn; π + 4πn], nZ.

2. Решите неравенства:

a) sincos-;

б) 2sin2;

в) sin 2x + cos 2x 0;

г) sin2 x + 2sin x 0.

Ответ: а) , nZ; б) , nZ; в) , nZ; г) (-π + 2πn; 2πn), nZ.

 

II. Самостоятельная работа

Вариант 1

Решите неравенства:

а) 2sin х - 1. (4 балла)

б) - 3tgx . (4 балла)

в) 2 cos . (4 балла)

Вариант 2

Решите неравенства:

a) 2cosx . (4 балла)

б) - tgx 3. (4 балла)

в) 2 sin -1 . (4 балла)

Ответ: B-1: a) , nZ; б) , nZ; в) , nZ

B-2: a) , nZ; б) , nZ; в) , nZ.

 

IV. Обобщение сведений о решении тригонометрических неравенств

Вопрос к классу

1. При каких значениях а имеет развязки неравенство: a) sin t > а; б) sin t a?

2. При каких значениях b имеет развязки неравенство: a) cos t > b; б) sin t b?

3. Как найти развязки неравенств: a) sin t > а; б) sin t а; в) cos t > b; г) cos t b?

4. Как найти развязки неравенств: a) tg t > а; б) tg t а; в) ctg t > b; г) ctg t b?

В ходе обсуждения вопросов заполняется таблица 12 на доске и в тетрадях учащихся.

 

V. Подведение итогов урока

 

VI. Домашнее задание

Решите неравенства:

a) sin ; б) cos2 - sin2 - 0,5; в) sin х + cos х > 0 .

 

Таблица 12