УРОК № 13
Тема. Формула Герона
Цель урока: вывод формулы Герона для площади треугольника. Формирование умений учащихся применять выведенную формулу к решению задач.
Тип урока: комбинированный.
Наглядность и оборудование: таблица «Площади треугольников и четырехугольников» [13].
Требования к уровню подготовки учащихся: используют формулу Герона во время решения задач.
Ход урока
И. Проверка домашнего задания
Проверить наличие выполненных домашних заданий и ответить на вопросы, которые возникли у учащихся при их выполнении.
Задача 1. Решение
Поскольку квадрат и ромб имеют одинаковые периметры, то их стороны равны. Пусть длина стороны равна а, тогда площадь квадрата равна а2, а площадь ромба a2sinα, где α - угол ромба.
Поскольку sinα 1, то a2sinα а2. Следовательно, площадь ромба меньше площадь квадрата.
Ответ. Квадрат.
Задача 2. Решение
Поскольку в треугольнике ABC (рис. 45) АВ = а,
CAB = 45°, то АС = АВ ∙ cos
CAB = a ∙ cos45° = a ∙
=
.
SΔAВC =
AC2 =
=
.
Ответ.
.

Задача 3. Решение
Пусть в треугольнике ABC (рис. 46) АС = ВС = 1 м,
С = 70°, тогда S =
∙ AC ∙ BC ∙ sinC =
∙ 1 ∙ 1 ∙ sin70° =
∙ sin70°
∙ 0,94 = 0,47 (м2).
Ответ.
0,47 м2.
Математический диктант
- 1) Найдите площадь прямоугольника со сторонами 2 см и 3 см.
- 2) Найдите площадь прямоугольного треугольника с катетами 3 см и 2 см.
- 3) Найдите площадь правильного треугольника со стороной 2 см.
- 4) Найдите площадь параллелограмма со сторонами 2 см и
см, если угол между сторонами составляет 60°.
- 5) Найдите площадь ромба, диагонали которого равны 3 см и 4 см.
- 6) Найдите площадь треугольника, стороны которого равны
см и 3 см, а угол между ними составляет 135°.
Ответы. 1) 6 см2; 2) 3 см2; 3)
см2; 4) 3 см2; 5) 6 см2; 6) 1,5 см2.
II. Восприятие и осознание нового материала
Вы научились находить площадь произвольного треугольника с известными:
- 1) стороной и высотой, проведенной к этой стороне;
- 2) сторонами и углом между ними.
Сегодня мы ознакомимся с тем, как можно найти площадь треугольника, если известны три его стороны. Эту формулу получил Герон Александрийский древнегреческий ученый, живший в Александрии в i в. н. есть. Известно, что он был ученым-инженером, занимался геодезией и прикладной математикой.
Проведем высоту к наибольшей стороны треугольника ABC (рис. 47). Пусть АС = b - наибольшая сторона этого треугольника, АВ = с, ВС = а, BD
AC. Пусть AD = х, тогда DC = b - х. Из прямоугольного треугольника ABD имеем: BD2 = c2 - x2. Из прямоугольного треугольника BCD имеем: BD2 = а2 - (b - x)2. Тогда имеем уравнение с2 - х2 = a2 - (b - х)2, из которого найдем х.
с2 - х2 = а2 - b2 + 2bx - x2; 2bx = c2 + b2 - a2;
.
Тогда BD =
=
=
.
Следовательно, S =
b ∙ ВD = 
=
=
=
=
=
=
=
.
Учитывая, что
, имеем:
S =
=
.
Что и требовалось доказать.

Коллективное решение задач
Найдите площадь треугольника по трем сторонам:
а) 17, 65, 80; б)
,
, 6; в) 15, 37
, 47
; г) 2
, 3
, 1,83.
Решение
а) S =
=
=
= 288.
б)
.
S =
=
= 10.
в)
.
S =
=
= 42
=
=
= 193
.
г)
.
S=
=
=
=
=
= 1,4.
III. Закрепление и осмысление нового материала
Коллективное решение задач
Стороны треугольника равны а, b, с. Найдите высоту треугольника, опущенную на сторону с.
Решение
,
.
Поскольку S =
chc, то hc =
=
.
Ответ.
.
Самостоятельное решение задач
Боковые стороны треугольника равны 30 см и 25 см. Найдите высоту треугольника, опущенную на основание, равна: а) 25 см; б) 11 см.
Решение
а)
,
(см2).
S =
∙ 25 ∙ h, 300 =
∙ 25 h, h =
= 24 (см).
Ответ. 24 см.
б)
,
(см2).
S =
∙ 11 ∙ h, 132 =
∙ 11 ∙ h, h =
= 24 (см).
Ответ. 24 см.
Коллективное решение задачи
Периметр равнобедренного треугольника равен 64 см, а его боковая сторона на 11 см больше основания. Найдите высоту треугольника, опущенную на боковую сторону.
Решение

Пусть треугольник ABC (рис. 48) равнобедренный, АВ = ВС. Пусть АС = х см, тогда АВ = ВС = (х + 11) см. Поскольку периметр равен 64 см, то имеем:
x + 11 + x + 11 + x = 64; 3х + 22 = 64; 3х = 42; х = 14. Следовательно, АС = 14 см, АВ = ВС = 25 см.
Поскольку
=
= 7 ∙ 4 ∙ 6 = 168 (см2), S =
∙ АВ ∙ h, то h =
=
= 13,44 (см).
Ответ. 13,44 см.
IV. Самостоятельная работа
Вариант 1
- 1. Найдите наименьшую высоту треугольника со сторонами 5, 5, 6.
- 2. Найдите наибольшую высоту треугольника со сторонами
,
, 6.
Вариант 2
- 1. Найдите наименьшую высоту треугольника со сторонами 17, 65, 80.
- 2. Найдите наибольшую высоту треугольника со сторонами 13, 37
, 47-
.
Решение задач самостоятельной работы
Вариант 1
1.
= 8,
= 12(см2).
S =
∙ 6 h, h = -
=
=
= 4 (см).
Ответ. 4 см.
2. S = 10 см 2. S =
∙
∙ h, h =
=
=
= 4,8 (см).
Ответ. 4,8 см.
Вариант 2
1.
= 81,
= 288(см2).
S =
∙ 80 ∙ h, h =
=
= 7,2 (см).
Ответ. 7,2 см.
2. S =
2 см. S =
∙ 13 ∙ h, h =
=
=
= 29
(см).
Ответ. 29
см.
V. Домашнее задание
Решить задачи.
- 1. Найдите площадь треугольника по трем сторонам, равны:
а) 13, 14, 15; б) 5, 5, 6.
- 2. Найдите высоты треугольника, у которого стороны равны 13 см, 14 см, 15 см.
- 3. Найдите высоту треугольника со сторонами 2
, 3
, 1,83, проведенная на основание 2
.
VI. Подведение итогов урока Задача класса
- 1. Запишите известные вам формулы для нахождения площади треугольника.
- 2. Найдите площадь треугольника, если его стороны равны 3 см, 3 см и 2 см.