Часть 3 ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ
Раздел 9 МАГНЕТИЗМ. МАГНИТНОЕ ПОЛЕ ЭЛЕКТРИЧЕСКОГО ТОКА
9.4. Действие магнитного поля на ток. Взаимодействие токов. Закон Ампера
В предыдущих подразделах речь шла о
то, что проводники с током образуют вокруг себя магнитное поле и действуют на
постоянные магниты (магнитные стрелки), расположенные вблизи них, а магнитное поле
действует на проводник с током.
Законы действия магнитного поля на ток
установил А. Ампер в 1820 - 1821 гг. Тогда же было выяснено, что закономерности,
найдены А. Ампером теоретически и им же подтверждены экспериментально, можно
рассматривать как следствие закона Био - Савара - Лапласа, дополненного
принципу равенства действия и противодействия.
Если прямолинейный жесткий
проводник с длиной l, по которому течет ток силой I, поместить в однородное магнитное
поле с индукцией B, то на него будет действовать со стороны поля
сила F, которую можно измерить. Как показали
исследования А. Ампера, в этом случае
где
α - угол между направлениями тока и
индукции магнитного поля; k - коэффициент пропорциональности, который
определяют отбором единиц физических величин, входящих в формулу (9.21). В
единицах СИ k = 1, а потому далее коэффициент
опускаем.
Соотношение (9.21) называют
законом Ампера. Анализ формулы (9.21) показывает, что на прямолинейный жесткий
проводник с током, помещенный в однородное магнитное поле, действует со стороны поля
наибольшая сила тогда, когда α = 90°, т.е. когда магнитные силовые
линии пересекают проводник под прямым углом. Тогда
На
прямой ток, ориентирован вдоль поля, сила не будет действовать (F = 0, так как α = 0). Направление силы можно найти по
правилу левой руки: левую руку располагают так, чтобы линии индукции
магнитного поля входили в ладонь, а вытянутые пальцы совпадали с направлением
тока, тогда отогнутый большой палец укажет направление силы, действующей на проводник с
стороны поля. С помощью формулы (9.22) можно выяснить физический смысл магнитной
индукции. Из нее следует, что магнитная индукция В численно равна силе, действующей
со стороны поля на единицу длины проводника, по которому проходит ток единичной
силы, перпендикулярный к направлению магнитного поля.
Рис. 9.6
Рассмотрим взаимодействие двух прямых бесконечно
длинных проводников с током, расположенных параллельно друг другу на расстоянии d (рис. 9.6). Опыт показывает, что такие
проводники притягиваются друг к другу, если токи в них имеют одинаковый
направление (параллельные), и отталкиваются, если токи направлены противоположно (антипаралельні).
Взаимодействие параллельных токов нетрудно объяснить, если учесть, что каждый из
проводников создает магнитное поле, которое, по закону Ампера действует на другой
проводник с током. Определим сначала силу F1, с которой действует магнитное поле с
индукцией В2, создаваемого током I2,
на проводник с током И1:
где
l - длина элемента первого
проводника, на который действует сила F1. Учитывая, что в этом случае [см.
формулу Ґ9.15)1. имеем
где
d - расстояние между проводниками.
Аналогично можно получить формулу для
силы F2, с которой магнитное поле,
создается током I1, действует на проводник с током И2:
Следовательно, силы F1 и F2
одинаковые по значению и противоположно направленные, что видно из рис. 9.6.
Таким образом, сила взаимодействия двух
прямолинейных бесконечно длинных параллельных проводников в расчете на
отрезок l проводникa прямо пропорциональна произведению сил токов и обратно
пропорциональна расстоянию между ними. Это утверждение называется законом взаимодействия
токов.
Пользуясь законом взаимодействия
токов, можно установить единицу силы тока, за которую в СИ принимают ампер (А) -
силу такого постоянного тока, при прохождении которого по двум параллельным
прямолинейных проводниках бесконечной длины и очень малой площади кругового
поперечного сечения, содержащихся в вакууме на расстоянии 1 м друг от друга,
возникает сила электромагнитного взаимодействия между проводниками, которая равна 2 ∙ 10-7 Н на каждый метр длины.
Исходя из этого определения ампера
и формулы (9.25), нетрудно доказать, что
Магнитная индукция выражается в
теслах (Тл). Тесла - магнитная индукция такого однородного магнитного поля,
действует с силой 1 Н на каждый метр длины прямолинейного проводника, который размещен
перпендикулярно к направлению поля, если по этому проводнику проходит ток силой
1 А:
За единицу напряженности магнитного поля,
которую называют ампер на метр (А/м), берут напряженность такого поля, магнитная
индукция которого в вакууме равна 4π ∙
10-7 Тл.
Кроме СИ, которой отдается предпочтение в
практике электромагнитных измерений, пользуются абсолютной
электромагнитной системой единиц (СГСМ) и системой Гаусса. Не останавливаясь на принципах построения
этих систем, приведем лишь соотношение между единицами магнитных величин в
системах СГСМ и СИ.
Гаусс (Гс) - единица магнитной
индукции в системе СГСМ - связан с теслой - единицей магнитной индукции в
СИ - так: 1 Гс = 10-4 Тл.
Напряженность магнитного поля в
системе СГСМ выражается в ерстедах (Е). Связь между ерстедами и единицей
напряженности в СИ такой: