Физика
Уроки Физики
Все предметы
ВНО 2016
Конспекты уроков
Опорные конспекты
Учебники PDF
Учебники онлайн
Библиотека PDF
Словари
Справочник школьника
Мастер-класс для школьника

ВСЕ УРОКИ ФИЗИКИ 11 класс
АКАДЕМИЧЕСКИЙ УРОВЕНЬ

1-й семестр

ЭЛЕКТРОДИНАМИКА

2. Электрический ток

УРОК 14/25

Тема. Электрический ток в вакууме

 

Цель урока: разъяснить ученикам природу электрического тока в вакууме.

Тип урока: урок изучения нового материала.

ПЛАН УРОКА

Демонстрации

7 мин.

1. Явление термоэлектронной эмиссии.

2. Фрагменты видеофильма «Электрический ток в вакууме».

Изучение нового материала

28 мин.

1. Термоелектронна эмиссия.

2. Электрический ток в вакууме.

3. Вакуумный диод.

4. Электронно-лучевая трубка.

Закрепление изученного материала

10 мин.

1. Качественные вопросы.

2. Учимся решать задачи.

 

ИЗУЧЕНИЕ НОВОГО МАТЕРИАЛА

1. Термоелектронна эмиссия

Вакуум - это состояние газа, при котором давление меньше атмосферного. Различают низкий, средний и высокий вакуум.

Для создания высокого вакуума необходимое разрежение, за которого в газе, что остался, средняя длина свободного пробега молекул больше размеров сосуда или расстояния между электродами в сосуде. Следовательно, если в сосуде создан вакуум, то молекулы в нем почти не сталкиваются между собой и пролетают свободно межэлектродный пространство. При этом они испытывают столкновения лишь с электродами или со стенками сосуда.

Чтобы в вакууме существовал ток, необходимо поместить в вакуум источник свободных электронов. Наибольшая концентрация свободных электронов в металлах. Но при комнатной температуре они не могут покинуть металл, потому что их в нем удерживают силы кулоновского притяжения положительных ионов. Для преодоления этих сил электрону, чтобы покинуть поверхность металла, необходимо затратить определенную энергию, которую называют работой выхода.

Если кинетическая энергия электрона превысит или будет равна работе выхода, то он покинет поверхность металла и станет свободным.

image197

Процесс испускания электронов с поверхности металла называют эмиссией. В зависимости от того, как была передана электронам необходима энергия, различают несколько видов эмиссии. Один из них - термоелектронна эмиссия.

Ø Испускание электронов нагретыми телами называют термоелектронною эмиссией.

Явление термоэлектронной эмиссии приводит к тому, что нагретый металлический электрод непрерывно испускает электроны. Электроны образуют вокруг электрода электронное облако. Электрод при этом заряжается положительно, и под воздействием электрического поля заряженного облака электроны из облака частично возвращаются на электрод.

В равновесном состоянии число электронов, покинувших электрод за секунду, равно числу электронов, которые вернулись на электрод за это время.

2. Электрический ток в вакууме

Для существования тока необходимо выполнение двух условий: наличие свободных заряженных частиц и электрического поля. Для создания этих условий в баллон помещают два электрода (катод и анод) и выкачивают из баллона воздуха. В результате нагрева катода из него вылетают электроны. На катод подают отрицательный потенциал, а на анод - положительный.

Электрический ток в вакууме представляет собой направленный движение электронов, полученных в результате термоэлектронной эмиссии.

3. Вакуумный диод

Современный вакуумный диод состоит из стеклянного или металлокерамического баллона, из которого откачан воздух до давления 10-7 мм рт. ст. В баллон впаяны два электрода, один из которых - катод - имеет вид вертикального металлического цилиндра, изготовленного из вольфрама и покрытого обычно слоем оксидов щелочноземельных металлов.

Внутри катода расположен изолированный проводник, что его нагревает переменный ток. Нагретый катод испускает электроны, достигающие анода. Анод лампы представляет собой круглый или овальный цилиндр, имеющий общую ось с катодом.

Односторонняя проводимость вакуумного диода обусловлена тем, что вследствие нагревания электроны вылетают из горячего катода и движутся до холодного анода. Электроны могут двигаться через диод только от катода к аноду (то есть электрический ток может протекать только в обратном направлении: от анода к катоду).

На рисунке воспроизведен вольт-амперную характеристику вакуумного диода (отрицательное значение напряжения соответствует случаю, когда потенциал катода выше потенциала анода, то есть электрическое поле «пытается» вернуть электроны обратно на катод).

 

 

Вакуумные диоды используют для выпрямления переменного тока. Если поместить между катодом и анодом еще один электрод (сетку), то даже незначительное изменение напряжения между сеткой и катодом существенно влиять на анодный ток. Такая электронная лампа (триод) позволяет усиливать слабые электрические сигналы. Поэтому некоторое время эти лампы были основными элементами электронных устройств.

4. Электронно-лучевая трубка

Электрический ток в вакууме применяли в электронно-лучевой трубке (ЭЛТ), без которой долгое время нельзя было представить телевизор или осциллограф.

На рисунке упрощенно показана конструкция ЭЛТ.

 

 

Электронная «пушка» в горловине трубки - катод, который испускает интенсивный пучок электронов. Специальная система цилиндров с отверстиями (1) фокусирует этот пучок, делает его узким. Когда электроны попадают на экран (4), он начинает светиться. Управлять потоком электронов можно с помощью вертикальных (2) или горизонтальных (3) пластин.

Электронам в вакууме можно передать значительную энергию. Электронные пучки можно применять даже для плавки металлов в вакууме.

 

ВОПРОС К УЧАЩИМСЯ В ХОДЕ ИЗЛОЖЕНИЯ НОВОГО МАТЕРИАЛА

Первый уровень

1. С какой целью в электронных лампах создают высокий вакуум?

2. Почему вакуумный диод проводит ток только в одном направлении?

3. Каково назначение электронной пушки?

4. Как осуществляют управление электронными пучками?

Второй уровень

1. Какие особенности имеет вольт-амперная характеристика вакуумного диода?

2. Будет ли работать в космосе радіолампа с разбитым стеклом?

 

ЗАКРЕПЛЕНИЕ ИЗУЧЕННОГО МАТЕРИАЛА

1). Качественные вопросы

1. Что нужно сделать, чтобы триелектродну лампу можно было использовать как диод?

2. Каким образом можно: а) увеличить скорость электронов в пучке; б) изменить направление движения электронов; в) остановить движущиеся электроны?

2). Учимся решать задачи

1. Максимальный анодный ток в вакуумном диоде 50 мА. Сколько электронов вылетает из катода ежесекундно?

2. Пучок электронов, которые разгоняются напряжением U1 = 5 кВ, влетает в плоский конденсатор посередине между пластинами и параллельно к ним. Длина конденсатора l = 10 см, расстояние между пластинами d = 10 мм. За какого наименьшего напряжения U2 на конденсаторе электроны не будут вылетать из него?

Решения. Движение электрона напоминает движение тела, брошенного горизонтально.

 

 

Горизонтальная составляющая v скорости электрона не меняется, она совпадает со скоростью электрона после ускорения. Эту скорость можно определить, воспользовавшись законом сохранения энергии: Здесь e - элементарный электрический заряд, me - масса электрона. Вертикальное ускорение a передает электрону сила F, действующая со стороны электрического поля конденсатора. Согласно второму закону Ньютона,

image201

где - напряженность электрического поля в конденсаторе.

Электроны не будут вылетать из конденсатора, если они сместятся на расстояние d/2.

Итак, image202 - время движения электрона в конденсаторе. Отсюда image203

Проверив единицы величин и подставив числовые значения, получаем U2 = 100 B.

 

ЧТО МЫ УЗНАЛИ НА УРОКЕ

• Вакуум - газ, разреженный настолько, что средняя длина свободного пробега молекул превышает линейные размеры сосуда.

Энергию которую необходимо затратить электрону, чтобы покинуть поверхность металла, называют работой выхода.

Испускание электронов нагретыми телами называют термоелектронною эмиссией.

Электрический ток в вакууме представляет собой направленный движение электронов, полученных в результате термоэлектронной эмиссии.

• Вакуумный диод имеет одностороннюю проводимость.

Электронно-лучевая трубка позволяет управлять движением электронов. Именно ЭЛТ сделала возможным создание телевидения.

 

Домашнее задание

1. Подр-1: § 17; подр-2: § 9.

2. Сб.:

Рів1 № 6.12; 6.13; 6.14.

Рів2 № 6.19; 6.20; 6.22, 6.23.

3. Д: подготовиться к самостоятельной работе № 4.

 

ЗАДАНИЯ ИЗ САМОСТОЯТЕЛЬНОЙ РАБОТЫ № 4 «ЗАКОНЫ ПОСТОЯННОГО ТОКА»

Задание 1 (1,5 балла)

Движение каких частиц создает электрический ток в жидкостях?

А Движение атомов.

Бы Движение молекул.

В Движение электронов.

Г Движение положительных и отрицательных ионов.

Задание 2 (2,5 балла)

На рисунке показан электрический разряд в воздухе, созданный с помощью трансформатора Тесла.

 

image205

 

А Электрический ток в любом газе обращен в ту сторону, куда движутся отрицательные ионы.

Бы Проводимость любого газа обусловлена движением только электронов.

В Проводимость любого газа обусловлена движением только ионов.

Г Проводимость любого газа обусловлена движением только электронов и ионов.

Задание 3 (3 балла)

Задача 3 имеет целью установить соответствие (логическую пару). К каждой строке, отмеченного буквой, подберите утверждение, обозначенное цифрой.

А Полупроводники n-типа.

Б Полупроводники p-типа.

Электронная проводимость.

Г Дырочная проводимость.

1 Полупроводники, в которых основными носителями зарядов являются дырки.

2 Полупроводники, в которых основными носителями зарядов являются электроны.

3 Проводимость полупроводника, обусловленная движением дырок.

4 Проводимость полупроводника, обусловленная движением электронов.

5 Полупроводники, в которых основными носителями зарядов являются электроны и дырки.

Задание 4 (5 баллов)

По какой силы тока проводился электролиз водного раствора CuSO4, если за 2 мин. на катоде выделилось 160 г меди?